



## Power Increase *Reality* in 2010

Hal Kneller, CPBE, DRB, AMD, CBNT

Nautel Market Development Mgr.



Las Vegas SBE Ennes Workshop

April 10, 2010



Making Digital Radio Work.

HD Radio is a trademark of iBiquity Digital Corp



# Why a Power Increase?

Better building penetration



- Reliable outdoor coverage to 60 dBu contour or beyond (less blending or multicast dropouts)
- Better reception on portables
- More viability for brokered SPS channels (\$\$)
- More viability for Conditional Access (\$\$)
- Potential for interference in minority of cases



#### WKLB Performance @ -20 dBc



Legend 🔵 Digital Analog



#### WKLB Performance @ -14 dBc





**Radio**<sup>®</sup>



#### WKLB Performance @ -10 dBc



Legend

Digital
Analog

**Radio**<sup>®</sup>







## **Power Increase Timeline**

- Experimental Period testing of -10 dBc
- FCC issues 9 STAs for -10 dBc testing
- 2008



- "Joint Parties" and iBiquity request power increase
- NPR Labs Report: 1% inadequate but 10% interference potential
- FCC Public Notice seeking comment on increase

#### 2009

- NPR Labs "metric" for determining interference
- FCC issues 2<sup>nd</sup> Public Notice
- Objectives: defer or not defer until NPR studies done?
- NPR Labs Report to FCC listener impact to mobile interference
- iBiquity and NPR Labs jointly submit 5-point proposal to FCC

2010

- FCC approves power increase (January 27)



# Key Points – FCC Report & Order

- Blanket 6 dB for all stations except "Super B/C"
- Beyond 6 dB, up to 10 dB, subject to formula developed by NPR Labs
- Established procedures for remediating harmful interference cases above -20 dBc
- FCC may revisit the issue if widespread interference results
- Asymmetrical sidebands not specifically addressed, but it would presumably be compliant with established interference criteria in the R&O.



# **Adjacent Channel Protection**

|                    |         | Proponent Analog F(50,10) Field Strength at<br>Protected Analog 60 dBu F(50,50) Contour | Maximum Permissible<br>FM Digital ERP |
|--------------------|---------|-----------------------------------------------------------------------------------------|---------------------------------------|
|                    |         | 51.2 dBµ and above                                                                      | -14 dBc                               |
|                    |         | 50.7 dBµ - 51.1 dBµ                                                                     | -13 dBc                               |
|                    |         | 50.3 dBµ - 50.6 dBµ                                                                     | -12 dBc                               |
| >51.2 dBu: 14 dBa  | (50,50) | 49.6 dBµ - 50.2 dBµ                                                                     | -11 dBc                               |
| <49.5 dBu: -10 dBc | -60 dBu | 49.5 dBµ or less                                                                        | -10 dBc                               |
| (50,10)            | -57 dB  | u<br>54 dBu                                                                             |                                       |



# **Interference Complaint Remediation**

#### Initial:

- Voluntary reductions
- Mutual resolution between parties



#### **Escalation:**

#### 6 documented complaints required for filing with FCC:

- Submit maps of ongoing interference inside protected contour
- Document tests and equipment used for tests
- FCC to resolve within 90 days
- In absence of FCC action, must reduce to -14 dBc
- LPFM and Translators excluded from protection



#### **MIA-FLL-WPB MARKET HIGHLIGHTS**

| -10 dBc (both SB) | Asymmetrical   | -14 dBc (both SB)                 |
|-------------------|----------------|-----------------------------------|
| WHDR              | WDNA -14 -10   | WLDI                              |
| WMIA              | WLRN -10 -14   |                                   |
| WMGE              | WLYF -12.6 -10 |                                   |
| WPOW              | WXEL -14 -10   |                                   |
| WFLC              | WKGR -14 -10   |                                   |
| WRTO -11.3 -11.3  |                |                                   |
| WEDR              |                |                                   |
| WKIS              |                |                                   |
| WMXJ              |                |                                   |
| WMIB              |                |                                   |
| WHQT              |                |                                   |
| WBBG              |                | Making Digital Radio <b>Wor</b> l |
|                   |                |                                   |



# **Notification Procedure**

- For -14 dBc operation:
  - Notify FCC within 10 days after commencing operation
  - <u>Digital Notification Form</u>, online at CDBS (not yet there) STA needed until May 10.



- For above -14 dBc operation:
  - File informal request with showing of calculation of proponent (50,10) contour on protected station's 60 dBu (50,50) contour.
  - <u>This is essentially the NPR Labs online calculator.</u>
- Note:
  - Super-powered FMs must file an informal application for *any* proposed increase in digital power.

# **How Much Injection is Enough?**

## Analyze your digital coverage

- High noise environment?
- Interference to other stations?
- Interference to your own analog?
- Regulatory clearance beyond -14?

#### **Consultants can help**

-15dB -16dB

**-14dB** -12dB -20dB -13dB -10dB



# **Digital Upgrade Options**

- Antenna upgrades
- Digital-only boosters
- Transmitter solutions:
  - -Add separate digital transmitter
    - High power combined
    - Space combined
  - -Higher power hybrid mode transmitter
  - -HD PowerBoost™



Radio®

# Antenna Options: More Gain

- Add bays to increase gain
- Increase injection without changing the transmitter power
- Increases system efficiency

#### Considerations

- Space on tower (additional \$\$ for rent?)
- Weight and wind load
- Impedance matching
- Coverage in antenna nulls
- Digital spectral purity tighter requirement



# R

# **Transmitters: High Power Combined**

 Higher injection means more power wasted in reject load

% Power to Reject Load







## High Level Combining Modification

| Coupling<br>Ratio | Licensed<br>TPO | Total<br>Analog<br>Power<br>Required | Digital<br>Power Total | New Digital<br>Power | Boost in<br>dB | Total Reject<br>Power |
|-------------------|-----------------|--------------------------------------|------------------------|----------------------|----------------|-----------------------|
| 10                | 100.00          | 111.00                               | 10.00                  | 1.00                 | 0              | 20.00                 |
| 9                 | 100.00          | 114.17                               | 10.00                  | 1.26                 | 1              | 22.92                 |
| 8                 | 100.00          | 118.36                               | 10.00                  | 1.58                 | 2              | 26.78                 |
| 7                 | 100.00          | 123.93                               | 10.00                  | 2.00                 | 3              | 31.94                 |
| 6                 | 100.00          | 131.43                               | 10.00                  | 2.51                 | 4              | 38.92                 |
| 5                 | 100.00          | 141.62                               | 10.00                  | 3.16                 | 5              | 48.46                 |
| 4                 | 100.00          | 155.66                               | 10.00                  | 3.98                 | 6              | 61.68                 |

# **Transmitters: Space Combined**

### Considerations

- Tower and building space?
- analog vs. digital radiation pattern differences
- RF IMD issues:
  - higher power filters required
  - circulators may be required
- Verify digital antenna ratings: voltage and power
- New developments in digital-only transmitters

#### (11kW digital from an NV20)



# **Transmitters: Higher Power Hybrid**

- Simple architecture simplest method
- Single box installation (unless paralleling)
- Higher HD injection level may reduce the analog TPO capability (see power chart)
- May need to replace your transmitter or combine another for higher total power
- Higher injection levels reduce efficiency



# **Efficiency vs. Injection Level - Common Amp** (Low Level Combined)



# **Transmitters:** Higher Injection Implications

#### Limitations:

- Linearity (spectral mask)
- Thermal dissipation
- Most transmitters with adaptive pre-correction are thermally limited today



Therefore it's important to KNOW before you just crank up power, thinking that as long as you make mask.....

#### Myat "LO-LOSS SOLUTION" PATENT PENDING



- Attractive solution for combining FM + HD Radio signals at powers above 20KW
- Efficient high level combining technique
- Ideal for the proposed 10dB digital sideband increase
- Allows existing Tx facilities to go from 20dB, to 10dB.
- Lower operating cost, less waste
- Evanescent Coupled Technology for superior efficiency
- Compact design suitable for floor, or ceiling mount
  - Recent article in RW on this technology Down side: large size, weight, cost





## Attention to Specifications

| Model   | -10    |          |       |  |  |  |
|---------|--------|----------|-------|--|--|--|
| #       | Comb   | FM (TPO) | IBOC  |  |  |  |
| NV 3.75 | 2,184  | 1,985    | 199   |  |  |  |
| NV 5    | 2,912  | 2,647    | 265   |  |  |  |
| NV 7.5  | 4,368  | 3,971    | 397   |  |  |  |
| NV 10   | 5,824  | 5,294    | 529   |  |  |  |
| NV 15   | 8,736  | 7,941    | 794   |  |  |  |
| NV 20   | 11,647 | 10,589   | 1,059 |  |  |  |
| NV 30   | 17,471 | 15,883   | 1,588 |  |  |  |
| NV 40   | 23,295 | 21,177   | 2,118 |  |  |  |

• Keep in mind the relationship between *combined total RMS power*, and *available analog FM TPO*.



## **Factors That Can Improve De-rating**

- Peak-to-Average Power Ratio Reduction (PAPR) such as Nautel PowerBoost<sup>™</sup> can yield an additional 30% in available analog power @ -10 dBc
- Asymmetrical sideband technology – optimizes power in upper and lower sidebands.





## Factors That Can Degrade De-rating

- Tube vs. Solid State Tubes generally de-rate faster as injection approaches -10 dBc
- Extended hybrid modes Depending on the Mode (MP2, MP3, MP11,etc.), require additional de-ratings due to additional digital carriers
- MP3 mode ~6% at -10 dBc (2 extended partitions)
- MP11 mode ~13% at -10 dBc (4 extended partitions)
- Check with your transmitter manufacturer!!

## **Transmitters: Power Ratings**



nautel

| HD Radio Injection Level Analysis Tool     |             |      |  |  |  |  |
|--------------------------------------------|-------------|------|--|--|--|--|
| HD PowerBoost →<br>Enter VSWR Capability → | No<br>1.2:1 | -    |  |  |  |  |
| Enter HD mode →                            | MP1         | -    |  |  |  |  |
| Enter Frequency →                          | 98.1        | MHz. |  |  |  |  |

| <u>HD Injection Level / Analog TPO</u> |               |              |               |               |              |               |  |
|----------------------------------------|---------------|--------------|---------------|---------------|--------------|---------------|--|
| Model                                  | <u>-20 dB</u> | <u>-18dB</u> | <u>-16 dB</u> | <u>-14 db</u> | <u>-12dB</u> | <u>-10 dB</u> |  |
| NV3.5                                  | 3,707         | 3,537        | 3,369         | 3,032         | 2,560        | 2,107         |  |
| NV5                                    | 4,942         | 4,716        | 4,492         | 4,042         | 3,413        | 2,809         |  |
| NV7.5                                  | 7,413         | 7,074        | 6,738         | 6,063         | 5,119        | 4,214         |  |
| NV10                                   | 9,884         | 9,432        | 8,983         | 8,084         | 6,826        | 5,618         |  |
| NV15                                   | 14,827        | 14,148       | 13,475        | 12,126        | 10,239       | 8,428         |  |
| NV20                                   | 19,769        | 18,864       | 17,967        | 16,169        | 13,652       | 11,237        |  |
| NV30                                   | 29,653        | 28,296       | 26,950        | 24,253        | 20,477       | 16,855        |  |
| NV40                                   | 39,537        | 37,728       | 35,934        | 32,337        | 27 ,303 (    | 22,474        |  |
| NV60                                   | 59,306        | 56,592       | 53,900        | 48,506        | 40,955       | 33,711        |  |
| NV80                                   | 79,075        | 75,456       | 71,867        | 64,674        | 54,606       | 44,948        |  |
|                                        |               |              |               |               |              |               |  |

All specifications subject to change. CK 3/24/10

All specifications based on 3dB mask headroom, and the NRSC measurement protocol.



#### HD Radio Injection Level Analysis Tool



|        | HD In                                                                                                         | ijection Lev                                                                                                                                                                                                                                                                                                                                                 | vel ( Analog                                                                                                                                                                                               | <u>a TPO</u>                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                   |
|--------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -20dB  | <u>-18dB</u>                                                                                                  | <u>-16dB</u>                                                                                                                                                                                                                                                                                                                                                 | <u>-14db</u>                                                                                                                                                                                               | <u>-12dB</u>                                                                                                                                                                                                                                                                     | <u>-10dB</u>                                                                                                                                                                                                                                                                                                                                      |
| 3,799  | 3,723                                                                                                         | 3,650                                                                                                                                                                                                                                                                                                                                                        | 3,411                                                                                                                                                                                                      | 3,076                                                                                                                                                                                                                                                                            | 2,715                                                                                                                                                                                                                                                                                                                                             |
| 5,066  | 4,964                                                                                                         | 4,866                                                                                                                                                                                                                                                                                                                                                        | 4,547                                                                                                                                                                                                      | 4,101                                                                                                                                                                                                                                                                            | 3,620                                                                                                                                                                                                                                                                                                                                             |
| 7,599  | 7,446                                                                                                         | 7,299                                                                                                                                                                                                                                                                                                                                                        | 6,821                                                                                                                                                                                                      | 6,151                                                                                                                                                                                                                                                                            | 5,430                                                                                                                                                                                                                                                                                                                                             |
| 10,131 | 9,928                                                                                                         | 9,732                                                                                                                                                                                                                                                                                                                                                        | 9,095                                                                                                                                                                                                      | 8,201                                                                                                                                                                                                                                                                            | 7,240                                                                                                                                                                                                                                                                                                                                             |
| 15,197 | 14,893                                                                                                        | 14,598                                                                                                                                                                                                                                                                                                                                                       | 13,642                                                                                                                                                                                                     | 12,302                                                                                                                                                                                                                                                                           | 10,859                                                                                                                                                                                                                                                                                                                                            |
| 20,263 | 19,857                                                                                                        | 19,464                                                                                                                                                                                                                                                                                                                                                       | 18,190                                                                                                                                                                                                     | 16,403                                                                                                                                                                                                                                                                           | 14,479                                                                                                                                                                                                                                                                                                                                            |
| 30,394 | 29,785                                                                                                        | 29,196                                                                                                                                                                                                                                                                                                                                                       | 27,285                                                                                                                                                                                                     | 24,604                                                                                                                                                                                                                                                                           | 21,719                                                                                                                                                                                                                                                                                                                                            |
| 40,526 | 39,714                                                                                                        | 38,928                                                                                                                                                                                                                                                                                                                                                       | 36,379                                                                                                                                                                                                     | 32,806                                                                                                                                                                                                                                                                           | 28,958                                                                                                                                                                                                                                                                                                                                            |
| 60,789 | 59,571                                                                                                        | 58,392                                                                                                                                                                                                                                                                                                                                                       | 54,569                                                                                                                                                                                                     | 49,208                                                                                                                                                                                                                                                                           | 43,437                                                                                                                                                                                                                                                                                                                                            |
| 81,052 | 79,428                                                                                                        | 77,856                                                                                                                                                                                                                                                                                                                                                       | 72,759                                                                                                                                                                                                     | 65,611                                                                                                                                                                                                                                                                           | 57,916                                                                                                                                                                                                                                                                                                                                            |
|        | <u>-20dB</u><br>3,799<br>5,066<br>7,599<br>10,131<br>15,197<br>20,263<br>30,394<br>40,526<br>60,789<br>81,052 | HD Ir           -20dB         -18dB           3,799         3,723           5,066         4,964           7,599         7,446           10,131         9,928           15,197         14,893           20,263         19,857           30,394         29,785           40,526         39,714           60,789         59,571           81,052         79,428 | HD Injection Level-20dB-18dB-16dB3,7993,7233,6505,0664,9644,8667,5997,4467,29910,1319,9289,73215,19714,89314,59820,26319,85719,46430,39429,78529,19640,52639,71438,92860,78959,57158,39281,05279,42877,856 | HD Injection Level / Analog-20dB-18dB-16dB-14db3,7993,7233,6503,4115,0664,9644,8664,5477,5997,4467,2996,82110,1319,9289,7329,09515,19714,89314,59813,64220,26319,85719,46418,19030,39429,78529,19627,28540,52639,71438,92836,37960,78959,57158,39254,56981,05279,42877,85672,759 | HD Injection Level / Analog TPO-20dB-18dB-16dB-14db-12dB3,7993,7233,6503,4113,0765,0664,9644,8664,5474,1017,5997,4467,2996,8216,15110,1319,9289,7329,0958,20115,19714,89314,59813,64212,30220,26319,85719,46418,19016,40330,39429,78529,19627,28524,60440,52639,71438,92836,37932,80660,78959,57158,39254,56949,20881,05279,42877,85672,75965,611 |

All specifications subject to change. CK 3/24/10

All specifications based on 3dB mask headroom, and the NRSC measurement protocol.

### **An Important Point to Ponder**



### **An Important Point to Ponder**



### **An Important Point to Ponder**

Example of station with "-14 dBc" lower and "-10 dBc" upper sideband power

nautel





#### Calculating the True Integrated (Total) Digital Power

- Convert to simple power ratio
  -13 dBc = .05 and -17 dBc = .02
- Combined power = 10\*log (.05 + .02) = 11.55 dBc
- LSB 200 W + USB 500 W = 700 W
- 700/10,000 = .07 \* 100 = 7% of analog power



# Thank You!

Hal Kneller NAUTEL, Ltd. Market Development Manager Mgr. Punta Gorda, FL hal.kneller@nautel.com +1 (877) 662-8835 x 5768



http://www.nautel.com/-14db/